DSBDA – Data Science and Big Data Analytics v2

  • Duration: 10 weeks
Categories:

Module 1 – Introduction to Big Data analytics

  • Big Data and its characteristics Lesson
  • Business value from Big Data
  • Data scientist

Module 2 – Data Analytics Lifecycle

  • Data analytics lifecycle overview
  • Discovery phase
  • Data preparation phase
  • Model planning phase
  • Model building phase
  • Communicate results phase
  • Operationalize phase

Module 3 – Basic data analytics methods using R

  • Introduction to the R programming language
  • Analyzing and exploring data
  • Statistics for model building and evaluation

Module 4– Advanced analytics theory and methods

  • Introduction to advanced analytics—theory and methods
  • K-means clustering
  • Association rules
  • Linear regression
  • Logistic regression
  • Text analysis
  • Naïve Bayes
  • Decision trees
  • Time series analysis

Module 5 – Advanced analytics—technology and tools

  • Introduction to advanced analytics—technology and tools
  • Hadoop ecosystem
  • In-database analytics SQL essentials
  • Advanced SQL and MADlib

Module 6 – Putting it all together

  • Preparing to operationalize
  • Preparing project presentations
  • Data visualization techniques

Leave feedback about this